Reconstruct structure from spatial experiment object per image id
Source:R/reconstructShapePPP.R
reconstructShapeDensitySPE.Rd
Reconstruct structure from spatial experiment object per image id
Usage
reconstructShapeDensitySPE(
spe,
marks,
image_col,
mark_select,
dim = 500,
bndw = NULL,
thres,
ncores = 1
)
Arguments
- spe
SpatialExperiment; a object of class
SpatialExperiment
- marks
character; name of column in
colData
that will correspond to theppp
marks- image_col
character; name of a column in
colData
that corresponds to the image- mark_select
character; name of mark that is to be selected for the reconstruction
- dim
numeric; x dimension of the final reconstruction. A lower resolution speed up computation but lead to less exact reconstruction. Default = 500
- bndw
numeric; bandwith of the sigma parameter in the density estimation, if no value is given the bandwith is estimated using cross validation with the
bw.diggle
function.- thres
numeric; intensity threshold for the reconstruction
- ncores
numeric; number of cores for parallel processing using
mclapply
. Default = 1
Examples
spe <- imcdatasets::Damond_2019_Pancreas("spe", full_dataset = FALSE)
#> see ?imcdatasets and browseVignettes('imcdatasets') for documentation
#> loading from cache
spe_sel <- spe[, spe[["image_name"]] %in% c("E02", "E03", "E04")]
all_islets <- reconstructShapeDensitySPE(spe_sel,
marks = "cell_category",
image_col = "image_name", mark_select = "islet", bndw = sigma, thres = 0.0025
)
all_islets
#> Simple feature collection with 8 features and 1 field
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 81.38922 ymin: 70.148 xmax: 562.7857 ymax: 519.656
#> CRS: NA
#> image_name st_cast.stCast...POLYGON..
#> 1 E02 POLYGON ((203.6163 516.42, ...
#> 2 E03 POLYGON ((181.8026 207.1209...
#> 3 E03 POLYGON ((394.6466 375.9907...
#> 4 E03 POLYGON ((254.8497 518.3958...
#> 5 E04 POLYGON ((149.8029 191.672,...
#> 6 E04 POLYGON ((285.1585 239.096,...
#> 7 E04 POLYGON ((491.6499 368.524,...
#> 8 E04 POLYGON ((353.3303 295.412,...